top of page

Nutrient and Maillard reaction product concentrations of commercially available pet foods and treats

  • Writer: TeamResearch
    TeamResearch
  • Sep 14, 2022
  • 2 min read

Sept, 2022

 

Oba PM, Hwisa N, Huang X, Cadwallader KR, Swanson KS. Nutrient and Maillard reaction product concentrations of commercially available pet foods and treats. J Anim Sci. 2022 Sep 9:skac305. doi: 10.1093/jas/skac305. Epub ahead of print. PMID: 36082767.


https://pubmed.ncbi.nlm.nih.gov/36082767/


Abstract:

Thermal processing is used to produce most commercial pet foods and treats to improve safety, shelf life, nutritional characteristics, texture, and nutrient digestibility. However, heat treatments can degrade protein quality by damaging essential amino acids, as well as contribute to the Maillard reaction. The Maillard reaction forms melanoidins that favorably improve food qualities (e.g., color, flavor, aroma), but also form Maillard reaction products (MRP) and advanced glycation end-products that may negatively affecting health. Because commercial pet diets are frequently fed to domestic cats and dogs throughout their lifetimes, it is critical to quantify MRP concentrations and understand the variables that influence their formation so future diets may be formulated with that in mind. Because few research studies on MRP in pet diets have been conducted, the goals of this study were to measure the MRP in commercial pet foods and treats, estimate pet MRP intake, and correlate MRP with dietary macronutrient concentrations. Fifty-three dry and wet dog foods, dog treats, and cat foods were analyzed for dry matter, organic matter, crude protein, acid-hydrolyzed fat, total dietary fiber, and gross energy using standard techniques. MRP were analyzed using HPLC and GC-MS. Data were analyzed using the Mixed Models procedure of SAS 9.4. Dry foods had lower reactive lysine concentrations and reactive lysine: total lysine ratios (indicator of damage) than wet foods. Wet foods had more fructoselysine (FRUC) than dry foods; however, dry dog treats contained more FRUC than wet dog treats. The greatest 5-hydroxymethyl-2-furfural (HMF) concentrations were measured in dry and wet dog foods, whereas the lowest HMF concentrations were measured in dry and wet cat foods. Based on dietary concentrations and estimated food intakes, dogs and cats fed wet foods are more likely to consume higher carboxymethyllysine and FRUC concentrations than those fed dry foods. However, dogs fed wet foods are more likely to consume higher HMF concentrations than those fed dry foods. In cats, those fed dry foods would consume higher HMF concentrations than those fed wet foods. We demonstrated that pet foods and treats contain highly variable MRP concentrations and depend on diet/treat type. In general, higher MRP concentrations were measured in wet pet foods and dry treats. While these findings are valuable, in vivo testing is needed to determine if and how MRP consumption affect pet health.

Recent Posts

See All

Kommentare


ABOUT

This website is a labor of love brought to you by the volunteers at Paws For Change. Our goal is to put together links to published research studies, articles, books, and other media which have influenced our approach to feeding diets that include fresh and raw foods. We encourage everyone to research further to gain a fuller understanding of any controversies or debates involved. It is a growing collection and we welcome you to use the submission form below if you have studies you'd like to suggest be included here.

Submit A Study

Thanks for submitting your suggestions. Check back regularly to see updates.

Paws For Change (1).png

 Brought to you by

bottom of page