top of page

BDNF Increases with Behavioral Enrichment and an Antioxidant Diet in the Aged Dog

reneemorin

Updated: Dec 15, 2022

May 2010

 

Fahnestock M, Marchese M, Head E, Pop V, Michalski B, Milgram WN, Cotman CW. BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiol Aging. 2012 Mar;33(3):546-54. doi: 10.1016/j.neurobiolaging.2010.03.019. Epub 2010 May 5. PMID: 20447733; PMCID: PMC2935515.


https://pubmed.ncbi.nlm.nih.gov/20447733/

Abstract

The aged canine (dog) is an excellent model for investigating the neurobiological changes that underlie cognitive impairment and neurodegeneration in humans, as canines and humans undergo similar pathological and behavioral changes with aging. Recent evidence indicates that a combination of environmental enrichment and antioxidant-fortified diet can be used to reduce the rate of age-dependent neuropathology and cognitive decline in aged dogs, although the mechanisms underlying these changes have not been established. We examined the hypothesis that an increase in levels of brain-derived neurotrophic factor (BDNF) is one of the factors underlying improvements in learning and memory. Old, cognitively impaired animals that did not receive any treatment showed a significant decrease in BDNF mRNA in the temporal cortex when compared with the young group. Animals receiving either an antioxidant diet or environmental enrichment displayed intermediate levels of BDNF mRNA. However, dogs receiving both an antioxidant diet and environmental enrichment showed increased levels of BDNF mRNA when compared with untreated aged dogs, approaching levels measured in young animals. BDNF receptor TrkB mRNA levels did not differ between groups. BDNF mRNA levels were positively correlated with improved cognitive performance and inversely correlated with cortical Aβ((1-42)) and Aβ((1-40)) levels. These findings suggest that environmental enrichment and antioxidant diet interact to maintain brain levels of BDNF, which may lead to improved cognitive performance. This is the first demonstration in a higher animal that nonpharmacological changes in lifestyle in advanced age can upregulate BDNF to levels approaching those in the young brain.

Comments


ABOUT

This website is a labor of love brought to you by the volunteers at Paws For Change. Our goal is to put together links to published research studies, articles, books, and other media which have influenced our approach to feeding diets that include fresh and raw foods. We encourage everyone to research further to gain a fuller understanding of any controversies or debates involved. It is a growing collection and we welcome you to use the submission form below if you have studies you'd like to suggest be included here.

Submit A Study

Thanks for submitting your suggestions. Check back regularly to see updates.

Paws For Change (1).png

 Brought to you by

bottom of page